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WW
hen you hit that final long ball in the World Series
of Baseball and know you need the home run,
what is your optimal path around the bases? If you

run straight for first, you either have to slow to a near stop
or go sailing far beyond into the outfield. The standard
recommended ‘‘banana’’ path follows the baseline maybe
halfway and then veers a bit to the right to come at first base
from a better angle to continue toward second. That cannot
be ideal. It would have been better to start at an angle to the
right to head directly to an outer point on the banana path.

So what is the optimal path? Using a very simple model,
we obtain the path of Figure 1. You start out heading about
25� right of the base line and run with acceleration of con-
stant maximum magnitude r, as illustrated by the vectors
decorating the path. You slow down a bit coming into first,
hit a local maximum speed as you cross second, and start the
final acceleration home a bit before crossing third base (see
Fig. 2). The total time around the bases is about 52.7/Hr,
about 16.7 seconds for r = 10 ft/sec2, about 25% faster than
following the baseline for 22.2 seconds (coming to a full stop
at first, second, and third base), and about 6% faster than
following a circular path for 17.8 seconds. The record time
according toGuiness [G] is 13.3 seconds, set byEvar Swanson
in Columbus, Ohio, in 1932. His average speed around the
bases was about 18.5 mph or 27 ft/sec.

Is it legal to run so far outside the base path? The rele-
vant official rule of Baseball says:

7.08 Any runner is out when—(a) (1) He runs more than
three feet away from his baseline to avoid being tagged
unless his action is to avoid interference with a fielder
fielding a batted ball. A runner’s baseline is established
when the tag attempt occurs and is a straight line from
the runner to the base he is attempting to reach safely.

The rule just says that after a tag attempt the runner cannot
deviate more than three feet from a straight line from that
point. The rule doesn’t apply until the slugger is almost home,
when our fastest path is nearly straight. So our path is legal.

Figure 1. Second picture shows the fastest path around the

bases given a bound r on the magnitude of the acceleration

vector, shown at each point. First picture from http://www.

bsideblog.com/images/2008/03/baseball-diamond.jpg.
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Our model simply assumes a bound r on the magnitude
of the baserunner’s acceleration (which includes decelera-
tion and curvature). The locus of the fastest path around
the bases is independent of r because you can scale veloc-
ity by k, acceleration by k2, and time by 1/k. So slow run-
ners should follow the same route as fast ones. At first you
might think that a very slow, awkward runner should just
walk directly from base to base, except that he’d likely fall
down trying to make the sharp turn at first.

To find the fastest path around the bases, we consider
the simpler problem of finding the fastest path between
two points, given the initial and final velocities, which has
a unique solution. Intriguingly enough, for this problem,
total time is not continuous in the prescribed conditions.
Even on the line, consider starting at the origin with initial
velocity 1 and going at maximal acceleration for a second,
ending with velocity 2; now if, instead, the prescribed final
velocity were increased a bit, you would have to start out
by decelerating to velocity 0, go backward to well left of
the origin, and then accelerate right to the terminus. (See
Remark after Lemma 1. Fortunately time is lower-semi-
continuous, which is what we need to prove the existence
of fastest paths.)

For a critical path betweenbases, the acceleration vector a
has constant magnitude r and remarkably is given by At + B
normalized, for some constant vectors A, B. In velocity space,
such paths are portions of catenaries (the famous least-
energy shape of hanging cables as for suspension bridges),
which in general can be absolute minima, local minima, or
unstable critical points (see Remarks after Lemma 2).

It is easy to see that a fastest path for bounded |a| also
minimizes max |a| for given time, since if you could reduce
max |a|, then by increasing speed along an appropriate
portion of the locus in space, you could reduce time. There
are, however, more solutions to the second problem. In the
example at the end of the Remarks after Lemma 2, all three
paths minimize max |a| for given times T1 \ T2 \ T3.

Given the fastest path between bases for prescribed
velocities, we find the shortest path around the bases by
minimizing over all choices of velocity at the bases, spec-
ifying velocity 0 at the start. We think that the solution is
unique, but we know no proof.

Our model is, of course, an oversimplified one, since
it assumes that maximum deceleration equals maximum
acceleration and that maximum acceleration remains pos-
sible at high speeds; taking r = 10 ft/sec2, it leads to a final
speed coming into home of about 42 ft/sec, faster than the
highest recorded human speed as of August 2009 of 40.5 ft/
sec by Usain Bolt, even though his initial acceleration
exceeded 18 ft/sec2 [S].

Fastest Paths
Lemmas 1 and 2 provide existence and structure for the
shortest path between two bases, given initial and final veloci-
ties. Proposition 1 considers the full baserunner problem with
all four bases. We conclude by explaining our numerical
solution of Figure 1.

LEMMA 1 There exists a fastest path from one point to

another in the plane, given initial velocity, final velocity,
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Figure 2. Speed as a function of time. For r = 10 ft/sec2, each

unit of time represents 3 seconds and each unit of velocity

represents 30 ft/sec. The times for each segment are about 5.1,

4.1, 4.4, and 3.1 seconds, for a total of about 16.7 seconds.
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and a bound r[ 0 on the acceleration. The minimum time

is a lower-semicontinuous function of the initial and final

positions and velocities.

REMARK The minimum time is not continuous in the pre-

scribed conditions. For example, for r = 1, the fastest path

from (0, 0) to (v0 + 1/2, 0) with initial velocity v0 [ 0 and

final velocity v0 + 1 + e is for e = 0 simply forward motion

for 1 second at unit acceleration, but for small e[ 0 one

must decelerate for v0 seconds to velocity 0 at (.5 v0
2, 0),

move backward, accelerating and decelerating for another

H2 v0 seconds to come to rest just left of (0, 0), and then

move forward for a bit more than a second at unit acceler-

ation, for total time a bit more than 1 + v0(1 + H2) seconds,

a huge discontinuity if v0 is large. See Figure 3 for the case

v0 = 1. In summary, increasing the final velocity of a linear

path with maximum acceleration involves backing up and a

discontinuous increase in total time.

PROOF OF LEMMA 1 First we note that there exists some

path satisfying the conditions. If the given velocities are 0,

this is obvious. Otherwise just follow the given initial

direction with maximum negative acceleration until obtain-

ing velocity 0, and similarly backwards from the terminal

point, to reduce to the obvious case. This path bounds the

minimum time and hence the positions and velocities.

Except for the trivial case when the initial and final position

and velocities coincide, there is also a lower bound on the

total time.

To prove simultaneously existence and lower-semicon-
tinuity in the prescribed conditions, consider a sequence of
paths with conditions converging to the prescriptions and
times Ti converging to the infimum T. We may assume that
the velocities are bounded functions from [0, Ti ] into R2

with Lipschitz constant at most r and that Ti B 2T. Rescale
time to change the domain to [0, T]. Now each velocity has
Lipschitz constant at most rTi /T B 2r and the conditions
still converge to the prescriptions. By the compactness of
uniformly bounded Lipschitz functions, we may assume
that the velocities and hence the paths converge; the limit
has time T as desired.

LEMMA 2 A fastest C1,1 path from one point to another in

the plane, given initial velocity, final velocity, and a bound

r[ 0 on the magnitude of the acceleration a,

a ¼ r
At þ B

At þ Bj j

for some constant vectors A, B, is unique.

REMARKS By a translation in time, we may assume that

B � A = 0 and that A is a unit vector. The path is real-analytic

in time unless B = 0 and t = 0, when a flips direction. In

addition, the path in space can have a singularity where the

velocity vanishes, as in Figure 4B.

Up to rotation and translation in the plane and scaling in
time and space, we may assume that

a ¼ ð1; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p ;

v ¼ ðarcsinh t;
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p

Þ þ v0;

x ¼ ðt arcsinh t �
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p

; :5 t
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p

þ :5 arcsinh tÞ þ v0 t;

pictured for v0 = 0, v0 = -(0,1), v0 = –(0,10), and v0 =

-(1,0) in Figure 4; or in the degenerate case

a ¼ sign t ¼ �1; 0ð Þ;
v ¼ ð�1� t; 0Þ þ v0;

x ¼ ð�t � :5t2; 0Þ þ v0t;

pictured for v0 = -(0,1) in Figure 5.
Some such critical paths are not minimizing. Indeed, the

translation in velocity space of a minimizer need not be
minimizing. For example, for r = 1, the following path P is
minimizing, but its translation P 0 by v0 = (1, 0) is not. The
path P starts at (0, 0), accelerates left for 1 second to (-1/2,
0), decelerates for 1 second to (-1, 0), and then accelerates
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Figure 3. As the prescribed final velocity increases past that

obtained by constant maximum acceleration, the fastest path

has to back up, with a discontinuous increase in total time.
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Figure 4. (A, B, C, D) Some critical paths with acceleration At + B normalized.

Figure 5. A symmetric critical path with acceleration ± (0,1), which is the special case A = (0,1), B = 0.
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to the right for 2 seconds, ending up at (1, 0) with velocity
(2, 0). Its translation P 0 starts at (0, 0) with velocity (1, 0),
decelerates for 1 second to (1/2, 0) and velocity (0, 0),
and then accelerates for 3 seconds ending at (5, 0) with
velocity (3, 0), for a total time of 4 seconds. A minimizer P}
accelerates for H10 - 1 seconds and then decelerates for
H10 - 3 seconds for a total time of 2H10 – 4 & 2.32 sec-
onds. In summary, the translation P 0 of a backtracking
minimizer P may decelerate unnecessarily and fail to be
minimizing.

Note that up to translation, rotation, and scaling, the
path in velocity space is the famous catenary v = cosh u
or in the degenerate case a line. It is well known that
such paths minimize energy $v dt = Dy for given length
r Dt.

There are relative minima that are not absolute minima.
Consider given velocities (-1, 1), (1, 1) and change in
position (0, Dy) vertical. Possible paths in velocity space are
catenaries (or horizontal lines), a 1-parameter family. A
horizontal line yields minimum time, but a catenary v =

a cosh (u/a) yields local minimum Dy. Rotating such a cat-
enary about the u-axis generates the famous minimal
catenoid surface, with area 2p times the potential energy $v
dt = Dy of the catenary. It is well known that for two rela-
tively close congruent vertical circles about the same
horizontal axis there are two catenoids, a slightly bowed area
minimum and a deeply bowed unstable one [TF, chap. I, §3].
Bowing upward from the catenary generator of the stable
catenoid, Dy increases; time decreases to the horizontal line,
then increases. Downward, time increases; Dy decreases to
the generator of the stable catenoid, then increases to the
generator of the unstable catenoid, then decreases, eventu-
ally going very negative. So Dy values between the
generators of the two catenoids are obtained three times,
with times T1 \ T2 \ T3. All have the same r. The first is the
global minimum. The third is a local minimum, since by the
energy-minimizing property of the catenary, decreasing time
requires increasing Dy.

All three paths minimize max |a| for given time,
because if you could reduce max |a| for given time, you
could rescale to reduce time and Dy in the same proportion
instead, but for reduced time, the minimum Dy is the cat-
enary in velocity space, for which Dy (the potential energy
of the catenary) is reduced less than proportionately,
because the average value of velocity increases.

PROOF OF LEMMA 2 For variable position x(t) in C1,1 and

variable acceleration a(t) in L?, we want to minimize

Z

T

0

dt

subject to the constraints €x ¼ a (a.e.) and |a| B r. Since T

is smooth in a, for some Lagrange multiplier k(t), a mini-

mizer is a critical point for $H dt where

H ¼ 1þ k � ða� €xÞ:

The Euler conditions of vanishing first variation (see, e.g.,
[M, 29.2]) say first that weakly

0 ¼ oH

ox
� d

dt

oH

o _x
þ d2

dt2
oH

o€x
¼ 0� 0� €k;

so that k(t) = At + B for constant vectors A, B, and second
that 0 B qH/qa. Since a is constrained to lie in the disc of
radius r, this second condition just says that

a ¼ �rk=jk ¼ r At þ Bð Þ=j jAt þ Bj:

Suppose that there were two fastest paths x1(t), x2(t).
Then their average x3(t) would also be a fastest path. Since
the acceleration a3(t) must, like a1 and a2, have constant
length r, a1 = a2 and x1 = x2.

PROPOSITION 1. Given r[ 0 and points x1, x2, . . ., xn in

R2 and optionally velocities v1, vn, there is a fastest path

from x1 to xn passing in order through x2, . . ., xn-1 with

initial velocity v0, final velocity vn, and acceleration boun-

ded by r. The acceleration is continuous of magnitude r,

with at most one possible exception from xk to xk+1: it may

flip direction between xk and xk+1 or it may change dis-

continuously at xk or xk+1; the former can occur only if a is

otherwise constant along the segment (as it is on the last

segment), the latter only if a is constant along both incident

segments. (If no velocities are prescribed, we must assume

that the points do not lie in order along a line, the one case

in which arbitrarily small time is possible.)

PROOF. Since the set of all possible velocities at the points

xi is compact, existence follows from Lemma 1. Lemma 2

implies the asserted regularity except at the points x2, …,

xn-1. Free velocity at xi adds a boundary term

k � dv�xiþ
xi�

to the first variation, so that the Lagrange multiplier k is

continuous at xi. Therefore the acceleration a = k/|k| is

continuous at xi, unless k(xi) = 0, in which case a is con-

stant on both incident segments. At xn, k = 0, so on the last

segment k = B(t - tn) (see Remarks after Lemma 2), and a

is constant on the last segment, except possibly for a flip.

Figure 6. The fastest path to second base.
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The fastest path (see Fig. 1). Computing the fastest path
proceeds in two steps. First, for prescribed velocities at
two sequential bases, we use Lemma 2, a finite difference
boundary-value method [F, §14.2], and multidimensional
Newton’s method [F, §7.1], to find a solution with velocities
that match the prescriptions. This problem can be highly
nonlinear, and requires close guesses for Newton’s method
to converge, which we achieved by deforming an easily
computed symmetric path. Second we minimize total time
over varied choices of prescribed velocities at the bases as
in the proof of Proposition 1, which we achieve with a
gradient descent method [F, §7.2]. Since there is no general
uniqueness result for relative minima, we cannot be sure
that our solution reflects a global minimum. Our MATLAB
code is given as an Appendix to the web version of this
article, available at the blog entry at blogs.williams.edu/
Morgan.

Figure 6 shows the fastest path to second base for a
double, taking 10.4 seconds for r = 10 ft/sec2, as com-
pared to 12 seconds along the baseline, coming to a full
stop at first and second base. The runner slows down a bit
before rounding first base.
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